
Java LibreOffice Programming. Chapter 49. Ext/Doc Event Macros Draft #2 (20th March 2017) 

 1 © Andrew Davison 2017 

Part 8: Extending LibreOffice 

Chapter 49. Extension and Document  

Event Macros 

 

 

The previous chapter introduced event macros, and described  

how a simple macro could be installed by copying it to a 

specific Office directory. This chapter looks at two other 

ways to package macros: as extensions, and by attaching 

them to documents. 

 

 

1.  Form Macros as an Extension 

Adding a macro to Office by installing it as an extension means that the user doesn't 

need to grapple with Office folders and copying files since Office's extension 

manager does it for them. This section also uses more complex macros than the ones 

in the previous chapter, namely ones that utilize their own dialogs and employ my 

utility classes. 

The FormMacros.oxt extension is created by zipping up a FormMacros\ folder, which 

is listed below: 

 

FormMacros 

 |   description.xml 

 |   form.png 

 |   license.txt 

 |   package-description.txt 

 |    

 +---dialogLibrary 

 |       NumExtractor.xdl 

 |        

 +---META-INF 

 |       manifest.xml 

 |        

 \---Utils 

         GetNumber.class 

         GetText.class 

         NumActionListener.class 

         parcel-descriptor.xml 

         Utils.jar 

 

The macros are in the Utils\ folder, and are utilized by the form stored in 

FormMacrosTest.odt in the ways shown in Figure 1. 

Topics: Form Macros as 

an Extension; Loading 

an XML Dialog; 

Building a Dialog at 

Runtime; Storing 

Macros inside the 

(Form) Document; 

Attaching Macros to 

Other Events; Executing 

Macros from the 

Command Line 

Example folders: 

"EvMacro Tests" and 

"Utils" 



Java LibreOffice Programming. Chapter 49. Ext/Doc Event Macros Draft #2 (20th March 2017) 

 2 © Andrew Davison 2017 

 

Figure 1. A Form and its Macros. 

 

Figure 1 illustrates the actions of two macros. GetText.show is attached to the form's 

button, and display the text in the adjacent textfield when the button is pressed. The 

GetNumber.get macro is attached to the second textfield, and is activated when 

<RETURN> is pressed. A dialog, created by the macro, offers the user a choice of 

replacing the text by a number or clearing the textfield. 

To simplify the example a little, FormMacrosTest.odt was created by hand rather than 

programmatically. Also, I'm going to attach the extension's macros to the button and 

textfield using Office's GUI, as explained shortly. 

I won’t explain all the contents of the FormMacros\ folder, because most of them 

were covered in early chapters, particularly in Chapter 45. For example, I won't be 

describing how I drew the "Number Extractor" dialog stored in 

dialogLibrary\NumExtractor.xdl since that technique was covered in the last chapter, 

in section 5. 

The new elements of FormMacros\ are the contents of manifest.xml and parcel-

descriptor.xml. 

manifest.xml states the location of the macros inside the extension, which in my case 

are in the Utils\ subdirectory. This is encoded as: 

 

<?xml version="1.0" encoding="UTF-8"?> 

<manifest:manifest  

     xmlns:manifest="http://openoffice.org/2001/manifest"> 

 

  <manifest:file-entry manifest:media-type= 

          "application/vnd.sun.star.framework-script" 

                       manifest:full-path="Utils/" /> 

 

</manifest:manifest> 

 



Java LibreOffice Programming. Chapter 49. Ext/Doc Event Macros Draft #2 (20th March 2017) 

 3 © Andrew Davison 2017 

parcel-descriptor.xml give details about the two macros, GetText.show and 

GetNumber.get, which are used by the Macro Selector dialog: 

 

<?xml version="1.0" encoding="UTF-8"?> 

<parcel language="Java" xmlns:parcel="scripting.dtd"> 

 

  <script language="Java"> 

    <locale lang="en"> 

      <displayname value="GetText.show"/> 

      <description> 

         Shows the text in a textfield 

      </description> 

    </locale> 

    <functionname value="GetText.show"/> 

    <logicalname value="GetText.show"/> 

    <languagedepprops> 

      <prop name="classpath" value=".:GetText:Utils.jar"/> 

    </languagedepprops> 

  </script> 

 

  <script language="Java"> 

    <locale lang="en"> 

      <displayname value="GetNumber.get"/> 

      <description> 

         Extract an integer from a textfield 

      </description> 

    </locale> 

    <functionname value="GetNumber.get"/> 

    <logicalname value="GetNumber.get"/> 

    <languagedepprops> 

      <prop name="classpath" value=".:GetNumber:Utils.jar"/> 

    </languagedepprops> 

  </script> 

 

</parcel> 

 

There's an important difference between this parcel-descriptor.xml and the one given 

for ShowEvent.show in the previous chapter, related to the new macros' classpaths: 

      <prop name="classpath" value=".:GetText:Utils.jar"/> 

and 

      <prop name="classpath" value=".:GetNumber:Utils.jar"/> 

The classpath line for ShowEvent.show was: 

      <prop name="classpath" value="ShowEvent.jar"/> 

 

The difference, which took many hours of experimentation to find, is due to the 

inclusion of my utilities classes as a JAR in Utils\.  

When Utils.jar is in the extension, Office is unable to recognize GetText.show and 

GetNumber.get packaged as JARs (e.g. as GetText.jar and GetNumber.jar). It appears 

that Office can only add a single JAR to its classpath with <languagedepprops>. 

Instead I've stored the macros as .class files in Utils\. In addition, it's necessary to 

include "." in the classpath so NumActionListener.class can be found at runtime.  



Java LibreOffice Programming. Chapter 49. Ext/Doc Event Macros Draft #2 (20th March 2017) 

 4 © Andrew Davison 2017 

The three Java files (GetText.java, GetNumber.java, and NumActionListener.java) 

are compiled and manually copied into FormMacros\Utils\. Then the 

installMacros.bat batch script zips up the folder as an OXT file, and calls unopkg.exe 

to install it. The extension manager displays the "Form Macros" as in Figure 2. 

 

 

Figure 2. The Form Macros Extension. 

 

By default, extension macros are installed as user macros, as can be seen in the Macro 

Selector dialog in Figure 3. 

 

 

Figure 3. The User Extension Macros in the Macro Selector. 

 

The Utils\ subdirectory of the extension has become a module called Utils. 

The full names of the extension macros can be obtained using my ListMacros.java or 

FindMacros.java examples. For example: 



Java LibreOffice Programming. Chapter 49. Ext/Doc Event Macros Draft #2 (20th March 2017) 

 5 © Andrew Davison 2017 

run FindMacros Utils 

produces: 

 

Matching Macros in Office: (2) 

  vnd.sun.star.script:Utils.GetNumber.get? 

      language=Java&location=user:uno_packages/FormMacros.oxt 

 

  vnd.sun.star.script:Utils.GetText.show? 

      language=Java&location=user:uno_packages/FormMacros.oxt 

  

1.1.  The GetText.show Macro 

GetText.show is triggered when a button is pressed; it displays the text currently in 

the "Text Box 1" textfield inside a message box (see Figure 1). The code for the class 

is: 

 

// in GetText.java 

public class GetText 

{ 

  private static final String LOG_FNM = "c://macrosInfo.txt"; 

              // log file for storing debugging output 

 

 

  public static void show(XScriptContext sc, ActionEvent e) 

  // Called when a button pressed 

  {  

    String controlName = Forms.getEventSourceName(e); 

 

    FileIO.appendTo(LOG_FNM, "\"" + controlName +  

                 "\" sent ActionEvent at " + Lo.getTimeStamp()); 

 

    XComponent doc = Lo.scriptInitialize(sc); 

    if (doc == null) 

      return; 

 

    // for debugging 

    Console console = new Console(); 

    console.setVisible(true); 

 

    Forms.listForms(doc); 

 

    XControlModel textBox = Forms.getControlModel(doc, "Text Box 1"); 

    // Props.showObjProps("TextBox", textBox); 

 

    String textContents = (String)Props.getProperty(textBox, "Text"); 

    GUI.showXMessageBox("Textbox text", textContents); 

 

    console.setVisible(false); 

    console.closeDown(); 

  } // end of show() for ActionEvent 

 

}  // end of GetText class 

 

The class implements a single show() method suitable for responding to 

ActionEvents. 



Java LibreOffice Programming. Chapter 49. Ext/Doc Event Macros Draft #2 (20th March 2017) 

 6 © Andrew Davison 2017 

Forms.getEventSourceName() returns the name of the control that sent the event and 

FileIO.appendTo() writes the details to a log file. This log is useful for debugging, 

and can be removed when the macro is finished. 

Lo.scriptInitialize() uses the macro's XScriptContext object to initialize globals 

maintained by my Lo class: 

 

// in the Lo class 

// globals 

private static XComponentContext xcc = null; 

private static XDesktop xDesktop = null; 

private static XMultiComponentFactory mcFactory = null;    

private static XMultiServiceFactory msFactory = null; 

 

 

public static XComponent scriptInitialize(XScriptContext sc) 

{ 

  if (sc == null) { 

    System.out.println("Script Context is null"); 

    return null; 

  } 

 

  xcc = sc.getComponentContext(); 

  if (xcc == null)  { 

    System.out.println("Could not access component context"); 

    return null; 

  } 

  mcFactory = xcc.getServiceManager(); 

  if (mcFactory == null) { 

    System.out.println("Office Service Manager is unavailable"); 

    return null; 

  } 

 

  xDesktop = sc.getDesktop(); 

  if (xDesktop == null)  { 

    System.out.println("Could not access desktop"); 

    return null; 

  } 

 

  XComponent doc = xDesktop.getCurrentComponent(); 

  if (doc == null)  { 

    System.out.println("Could not access document"); 

    return null; 

  } 

 

  msFactory =  Lo.qi(XMultiServiceFactory.class, doc); 

  return doc; 

}  // end of scriptInitialize() 

 

The log approach is fine for simple debugging, but it's also possible to create a 

Console window for displaying more complex textual output. One useful thing to 

report are the form's control details, by calling Forms.listForms(). The Console 

window looks as in Figure 4. 

 



Java LibreOffice Programming. Chapter 49. Ext/Doc Event Macros Draft #2 (20th March 2017) 

 7 © Andrew Davison 2017 

 

Figure 4. The Console Window Output for GetText.show. 

 

The control names in Figure 4 include "Text Box 1", which is used by 

Forms.getControlModel() to reference the textfield control: 

 
// part of show() in GetText.java... 

XControlModel textBox = Forms.getControlModel(doc, "Text Box 1"); 

String textContents = (String)Props.getProperty(textBox, "Text"); 

GUI.showXMessageBox("Textbox text", textContents); 

 

1.2.  The GetNumber.get Macro 

The second textfield in Figure 1 is called "AgeText". Its listener processes the text 

when the user types <RETURN>, which is implemented using a keypress listener, as 

shown in Figure 5. 

 

 

Figure 5. The "AgeText" Properties Dialog. 

 

GetNumber.get is woken up by every keypress, which should be ignored until the key 

is <RETURN>. Then the text is read from the "AgeText" textfield, and the extracted 

number displayed in the "Number Extractor" dialog (shown in Figure 1). This dialog 

has its own listener (a NumActionListener object) attached to the "Ok" and "Cancel" 

buttons which updates the "AgeText" textfield depending on which is pressed. 



Java LibreOffice Programming. Chapter 49. Ext/Doc Event Macros Draft #2 (20th March 2017) 

 8 © Andrew Davison 2017 

The GetNumber class defines a single static get() method, suitable for receiving 

KeyEvents: 

 

// in GetNumber.java 

public static void get(XScriptContext sc, KeyEvent e) 

{  

  String controlName = Forms.getEventSourceName(e); 

  if (e.KeyCode == Key.RETURN) {  // return typed 

    XComponent doc = Lo.scriptInitialize(sc); 

    if (doc != null) { 

      XControlModel cModel =  

             Forms.getControlModel(doc, controlName); 

      if (Forms.isTextField(cModel)) 

        loadXDLDialog(cModel); 

        // runtimeDialog(cModel); 

    } 

  } 

} // end of get() 

 

When the <RETURN> key is pressed, Forms.getControlModel() searches the form 

for the control that sent the event (i.e. the "AgeText" textfield).  

If the control is a textfield then the "Number Extractor" dialog is displayed in one of 

two ways – either loadXDLDialog() loads the dialog's XML from 

dialogLibrary\NumExtractor.xdl inside the extension, or runtimeDialog() creates the 

dialog dynamically by calling methods in my Dialogs utility class. I'll look at each 

approach in the next two sections. 

 

1.3.  Loading an XML Dialog  

Chapter 46 on Add-ons describes how to use Office's dialog editor to create a dialog 

and export it as an XDL file. The same steps were used to create NumExtractor.xdl, 

which is shown in Figure 6. 

 

Figure 6. The NumExtractor.xdl Dialog. 

 

The XML contents of NumExtractor.xdl are: 

 

<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE dlg:window PUBLIC "-//OpenOffice.org//DTD OfficeDocument 

1.0//EN" "dialog.dtd"> 

 

<dlg:window xmlns:dlg="http://openoffice.org/2000/dialog" 

            xmlns:script="http://openoffice.org/2000/script" 

            dlg:id="NumExtractor" 

            dlg:left="109" dlg:top="73" 

            dlg:width="94" dlg:height="44" 



Java LibreOffice Programming. Chapter 49. Ext/Doc Event Macros Draft #2 (20th March 2017) 

 9 © Andrew Davison 2017 

            dlg:closeable="true" dlg:moveable="true" 

            dlg:title="Number Extractor"> 

 

 <dlg:bulletinboard> 

  <dlg:text dlg:id="Label1" dlg:tab-index="0" 

            dlg:left="8" dlg:top="11" 

            dlg:width="48" dlg:height="10" 

            dlg:value="Extracted number: " 

            dlg:align="right"/> 

 

  <dlg:button dlg:id="CommandButton1" dlg:tab-index="2" 

              dlg:left="8" dlg:top="27" 

              dlg:width="33" dlg:height="12" 

              dlg:value="Ok"/> 

 

  <dlg:textfield dlg:id="TextField1" dlg:tab-index="1" 

                 dlg:left="61" dlg:top="9" 

                 dlg:width="24" dlg:height="12" 

                 dlg:align="center" 

                 dlg:readonly="true"/> 

 

  <dlg:button dlg:id="CommandButton2" dlg:tab-index="3" 

              dlg:left="52" dlg:top="27" 

              dlg:width="33" dlg:height="12" 

              dlg:value="Cancel"/> 

 

 </dlg:bulletinboard> 

</dlg:window> 

 

The most important things to note for later are the control IDs; in particular, the 

textfield and button names: "TextField1", "CommandButton1", and 

"CommandButton2". 

loadXDLDialog() utilizes Dialogs.loadAddonDialog() described in Chapter 46 to 

obtain a reference to the dialog. It's initialized by initDialog() and made live by 

XDialog.execute(): 

 

// in GetNumber.java 

private static void loadXDLDialog(XControlModel cModel) 

{ 

  XDialog dialog = Dialogs.loadAddonDialog( 

                          "org.openoffice.formmacros",  

                          "dialogLibrary/NumExtractor.xdl"); 

  if (dialog == null) 

    return; 

  initDialog(dialog, cModel); 

  dialog.execute(); 

}  // end of loadXDLDialog() 

 

initDialog() fills the dialog's textfield with numerical data extracted from the form's 

"AgeText" field, and attaches a NumActionListener to its buttons: 

 

// part of GetNumber.java 

private static void initDialog(XDialog dialog,  

                               XControlModel cModel) 

{ 

  XControl dialogCtrl = Dialogs.getDialogControl(dialog); 



Java LibreOffice Programming. Chapter 49. Ext/Doc Event Macros Draft #2 (20th March 2017) 

 10 © Andrew Davison 2017 

  if (dialogCtrl == null) 

    return; 

 

  int val = extractDigits(  

                (String)Props.getProperty(cModel, "Text")); 

 

  // store extracted number in dialog's read-only text field; 

  // the names of the controls are hardwired 

  XTextComponent numFieldTB = Lo.qi(XTextComponent.class, 

                 Dialogs.findControl(dialogCtrl, "TextField1")); 

  numFieldTB.setText(""+val); 

 

  // assign same listener to both buttons 

  NumActionListener naListener =  

               new NumActionListener(dialog, cModel, val); 

 

  XButton okButton = Lo.qi(XButton.class, 

          Dialogs.findControl(dialogCtrl, "CommandButton1")); 

  okButton.addActionListener(naListener); 

 

  XButton cancelButton = Lo.qi(XButton.class, 

          Dialogs.findControl(dialogCtrl, "CommandButton2")); 

  cancelButton.addActionListener(naListener); 

} // end of initDialog() 

 

Dialogs.findControl() finds the dialog's textfield and buttons using the IDs that we 

saw in NumExtractor.xdl. 

The NumActionListener class is included in the extension's Utils\ folder. It's a 

standard button listener, but uses Office's XActionListener and ActionEvent not the 

Java classes with similar names: 

 

// in NumActionListener.java 

public class NumActionListener implements XActionListener 

{ 

  private XDialog dialog; 

  private XControlModel cModel; 

  private int val; 

 

 

  public NumActionListener(XDialog dialog,  

                            XControlModel cModel, int val) 

  { this.dialog = dialog; 

    this.cModel = cModel; 

    this.val = val; 

  }  // end of NumActionListener() 

 

 

  public void actionPerformed(ActionEvent e) 

  { 

    String buttonName = Dialogs.getEventSourceName(e); 

    System.out.println("Event received from : " + buttonName); 

 

    if (buttonName.equals("CommandButton1"))        // "OK" button 

      Props.setProperty(cModel, "Text", "" + val);   

                                          // put val in text field 

    else if (buttonName.equals("CommandButton2"))   // "Cancel" 

      Props.setProperty(cModel, "Text", "");   // clear text field 

 



Java LibreOffice Programming. Chapter 49. Ext/Doc Event Macros Draft #2 (20th March 2017) 

 11 © Andrew Davison 2017 

    dialog.endExecute(); 

  }  // end of actionPerformed() 

 

 

  public void disposing(EventObject e) { }  

 

}  // end of NumActionListener class 

 

The number extracted from the "AgeText" textfield is passed to the listener via its 

constructor, along with a reference to the control. If the user presses "Ok" then the 

number is written into the textfield, otherwise an empty string is used to clear its 

contents. 

 

1.4.  Building a Dialog at Runtime 

Office's dialog editor is the easiest way to construct a dialog, but there may be 

situations where you want to create a simple dialog at run time. The commented-out 

call to runtimeDialog() in GetNumber.get shows how to do this using my Dialog class 

functions: 

 

// part of GetNumber.java 

private static void runtimeDialog(XControlModel cModel) 

{ 

  XControl dialogCtrl = makeDialogControl(); 

  if (dialogCtrl == null) 

    return; 

 

  XDialog dialog = Dialogs.createDialogPeer(dialogCtrl); 

  if (dialog == null) 

    return; 

 

  initDialog(dialog, cModel); 

  dialog.execute(); 

}  // end of runtimeDialog() 

 

The dialog generated by makeDialogControl() (see Figure 7) is very similar to the one 

defined in NumExtractor.xdl. 

 

 

Figure 7. The Rendering of the Runtime Dialog. 

 

makeDialogControl() creates an empty dialog, and fills it with a label, textfield and 

two buttons: 

 

// part of GetNumber.java 

private static XControl makeDialogControl() 



Java LibreOffice Programming. Chapter 49. Ext/Doc Event Macros Draft #2 (20th March 2017) 

 12 © Andrew Davison 2017 

{ 

  XControl dialogCtrl =  

        Dialogs.createDialogControl(109, 73, 94, 44,  

                                      "Number Extractor"); 

  if (dialogCtrl == null) 

    System.out.println("dialog control is null"); 

  // log("Dialog name:" + Dialogs.getControlName(dialogCtrl)); 

        // reports "OfficeDialog1" 

 

  XControl xc = Dialogs.insertLabel(dialogCtrl, 8, 11, 48,  

                                    "Extracted Number: "); 

  // log("Label name:" + Dialogs.getControlName(xc)); 

        // FixedText1 

 

  xc = Dialogs.insertTextField(dialogCtrl, 61, 9, 24, ""); 

  // log("Text field name:" + Dialogs.getControlName(xc)); 

        // TextField1 

 

  xc = Dialogs.insertButton(dialogCtrl, 9, 27, 33, "Ok"); 

  // log("Ok button name:" + Dialogs.getControlName(xc)); 

       // CommandButton1 

 

  xc = Dialogs.insertButton(dialogCtrl, 52, 27, 33, "Cancel"); 

  // log("Cancel button name:" + Dialogs.getControlName(xc)); 

       // CommandButton2 

 

  return dialogCtrl; 

}  // end of makeDialogControl() 

 

One tricky aspect is deciding on the control positions and widths passed to the 

Dialogs.insertXXX() methods. I based them on the values in NumExtractor.xdl.  

initDialog() is again used to initialize the dialog's textfield and buttons, which 

assumes they are called "TextField1", "CommandButton1", and "CommandButton2". 

I confirmed this for the runtime dialog by writing their name to the log file: 

 

// part of GetNumber.java 

// global 

private static final String LOG_FNM = "c://macrosInfo.txt"; 

 

private static void log(String msg) 

{  FileIO.appendTo(LOG_FNM, msg);  } 

 

 

1.5.  Dialogs and their Controls 

Dialog controls utilize the same model-view framework as form controls (which were 

described back in Chapter 39). Controls store data as properties spread over a 

hierarchy centered around UnoControlModel in the com.sun.star.awt module. A small 

fragment of that hierarchy is shown in Figure 8. 

 



Java LibreOffice Programming. Chapter 49. Ext/Doc Event Macros Draft #2 (20th March 2017) 

 13 © Andrew Davison 2017 

 

Figure 8. UnoControlModel and Some Subclasses. 

 

A dialog is represented by UnoControlDialogModel, which stores properties such as 

the title, a background image or color, and windowing flags such as whether it is 

closeable. Its XNameContainer interface allows the names of its component controls 

to be accessed.  

Some of the important properties, such as the (x, y) position of a control, are a little 

hard to find – they're not in UnoControlModel but its superclass, 

UnoControlDialogElement. 

The other part of the model-view framework are views which represent how a control 

is drawn. Views for different controls are subclasses of the UnoControl service, as 

shown in Figure 9. 

 

Figure 9. UnoControl and Some Subclasses. 

 



Java LibreOffice Programming. Chapter 49. Ext/Doc Event Macros Draft #2 (20th March 2017) 

 14 © Andrew Davison 2017 

UnoControl's XControl contains methods for linking a model to a view. Also, 

subclass interfaces, such as XButton and XTextComponent, are where listeners are 

attached to controls. 

It helps to remember the naming conventions illustrated by Figures 8 and 9 – a service 

containing the word "Model" is almost always for storing data, while a service 

without the word "Model" is almost always a view. 

Figure 9 doesn't include a dialog view; it's sufficiently different to deserve its own 

diagram, Figure 10. 

 

Figure 10. The UnoControlDialog Service. 

 

UnoControlDialog isn't a subclass of UnoControl, but its interface, 

XUnoControlDialog, still inherits XControl and so can be linked to a model. It also 

inherits XControlContainer which allows controls to be added to and removed from a 

dialog. XDialog contains execute() which makes a dialog active on screen. 

Dialogs.createDialogControl() creates a dialog view and model, and links them. The 

dialog is initialized by setting various properties in its model: 

 

// in the Dialogs class 

public static XControl createDialogControl(int x, int y,  

                     int width, int height, String title) 

{ try { 

    XControl dialogCtrl =   

                 Lo.createInstanceMCF(XControl.class,  

                     "com.sun.star.awt.UnoControlDialog"); 

    XControlModel xControlModel =  

                 Lo.createInstanceMCF(XControlModel.class,  

                     "com.sun.star.awt.UnoControlDialogModel"); 

    dialogCtrl.setModel(xControlModel);  // link view and model 

     

    XPropertySet props = getControlProps(dialogCtrl.getModel()); 

    props.setPropertyValue("PositionX", x); 

    props.setPropertyValue("PositionY", y); 

    props.setPropertyValue("Height", height); 

    props.setPropertyValue("Width", width); 

 

    props.setPropertyValue("Title", title); 

    props.setPropertyValue("Name", "OfficeDialog"); 

 

    props.setPropertyValue("Step", 0); 

    props.setPropertyValue("Moveable", true); 

    props.setPropertyValue("TabIndex", new Short((short) 0)); 

 



Java LibreOffice Programming. Chapter 49. Ext/Doc Event Macros Draft #2 (20th March 2017) 

 15 © Andrew Davison 2017 

    return dialogCtrl; 

  } 

  catch (Exception ex) { 

    System.out.println("Could not create dialog control: " + ex); 

    return null; 

  } 

}  // end of createDialogControl() 

 

makeDialogControl() in the GetNumber class adds a label, textfield, and two buttons 

to the dialog by calling Dialogs.insertXXX() methods. These methods are all quite 

similar, so I'll only explain insertButton(). Its job is to create a button model, and 

initialize its properties: 

 

// in the Dialogs class 

public static XControl insertButton(XControl dialogCtrl, 

                          int x, int y, int width, String label) 

{  return insertButton(dialogCtrl, x, y, width, label,  

                       PushButtonType.STANDARD_value); 

} 

 

 

public static XControl insertButton(XControl dialogCtrl, 

                          int x, int y, int width,  

                          String label, int pushButtonType) 

{ try { 

    // create a button model 

    XMultiServiceFactory msf =  

             Lo.qi(XMultiServiceFactory.class,  

                            dialogCtrl.getModel()); 

    Object model = msf.createInstance( 

               "com.sun.star.awt.UnoControlButtonModel"); 

     

    // generate a unique name for the control 

    XNameContainer nameCon = getDialogNmCon(dialogCtrl); 

    String nm = createName(nameCon, "CommandButton"); 

     

    // set properties in the model 

    XPropertySet props = getControlProps(model); 

    props.setPropertyValue("PositionX", x); 

    props.setPropertyValue("PositionY", y); 

    props.setPropertyValue("Height", 14); 

    props.setPropertyValue("Width", width); 

 

    props.setPropertyValue("Label", label); 

    props.setPropertyValue("PushButtonType",  

                  new Short((short) pushButtonType)); 

    props.setPropertyValue("Name", nm); 

     

    // add the model to the dialog 

    nameCon.insertByName(nm, model); 

     

    // get the dialog's container holding all the control views 

    XControlContainer ctrlCon =  

               Lo.qi(XControlContainer.class, dialogCtrl); 

 

    // use the model's name to get its view inside the dialog 

    return ctrlCon.getControl(nm); 

  } 

  catch (Exception ex) { 



Java LibreOffice Programming. Chapter 49. Ext/Doc Event Macros Draft #2 (20th March 2017) 

 16 © Andrew Davison 2017 

    System.out.println("Could not create button control: " + ex); 

    return null; 

  } 

}  // end of insertButton() 

 

First the model is created and added to the dialog. Its view is retrieved from the 

dialog's control container, and returned as an XControl object. 

Back in GetNumber.runtimeDialog(), the dialog's window (or peer) is linked to the 

Office window by Dialogs.createDialogPeer(): 

 

// in the Dialogs class 

public static XDialog createDialogPeer(XControl dialogCtrl) 

{ 

  XWindow xWindow = (XWindow) Lo.qi(XWindow.class, dialogCtrl); 

  xWindow.setVisible(false); 

             // set dialog window invisible until it is executed 

 

  XToolkit xToolkit = Lo.createInstanceMCF(XToolkit.class,  

                                  "com.sun.star.awt.Toolkit"); 

  XWindowPeer windowParentPeer = xToolkit.getDesktopWindow(); 

 

  dialogCtrl.createPeer(xToolkit, windowParentPeer); 

 

  XComponent dialogComponent = Lo.qi(XComponent.class, dialogCtrl); 

  return getDialog(dialogCtrl); 

}  // end of createDialogPeer() 

 

 

2.  Storing Macros inside the (Form) Document 

The previous section examined how to add macros to Office as extensions. Another 

popular way of utilizing macros is to embed them inside documents. 

I'll create a variation of the previous form, with the same functionality for its text 

fields, but GetText.show and GetNumber.get (and its dialog and listener) will be 

stored inside the document. 

Office documents, such as FormMacrosTest.odt, can be manipulated as zip files; I 

chose 7-Zip (http://www.7-zip.org/) for the purpose, because it's powerful, open 

source, and can be executed from the command line and from DOS batch scripts. 

I'm reusing the same form from the previous section, but stored in 

FormDocMacros.odt. It's unzipped using my unzipDoc.bat script to create a folder 

called FormDocMacros_odt\. The macros are added by modifying this folder: two 

new subdirectories are created, and the manifest.xml file changed, as illustrated by 

Figure 11. 



Java LibreOffice Programming. Chapter 49. Ext/Doc Event Macros Draft #2 (20th March 2017) 

 17 © Andrew Davison 2017 

 

Figure 11. The Changed FormDocMacros_odt\ Folder 

 

The dialogLibrary\ folder contains the same "Number Extractor" dialog definition as 

before. The Scripts\java\Utils\ folder contains Macros.jar, and a new version of 

parcel-descriptor.xml. 

Macros.jar is different from the earlier extension, which used three classes 

(GetText.class, GetNumber.class, and NumActionListener.class) and Utils.jar. 

Unfortunately, this combination doesn't work for document macros. Instead, 

Macros.jar is a renamed version of Utils.jar with GetText.class, GetNumber.class, and 

NumActionListener.class added to it.  

This change to the code organization is reflected in parcel-descriptor.xml. The 

classpath entries for the two macros become: 

<prop name="classpath" value="Macros.jar"/> 

manifest.xml specifies the structure of FormDocMacros_odt\, so lines are added 

describing dialogLibrary\ and Scripts\: 

 

// added to manifest.xml 

 

<manifest:file-entry manifest:media-type="text/xml"  

       manifest:full-path= 

          "Scripts/java/Utils/parcel-descriptor.xml"/> 

 

<manifest:file-entry manifest:media-type= 

                 "application/vnd.sun.star.dialog-library"  

       manifest:full-path="dialogLibrary/" /> 

<manifest:file-entry manifest:media-type="" 



Java LibreOffice Programming. Chapter 49. Ext/Doc Event Macros Draft #2 (20th March 2017) 

 18 © Andrew Davison 2017 

       manifest:full-path="dialogLibrary/NumExtractor.xdl" /> 

 

<manifest:file-entry manifest:media-type="application/binary"  

       manifest:full-path="Scripts/java/Utils/"/> 

<manifest:file-entry manifest:media-type="application/binary"  

       manifest:full-path="Scripts/java/"/> 

<manifest:file-entry manifest:media-type="application/binary"  

       manifest:full-path="Scripts/"/> 

 

<manifest:file-entry manifest:media-type="application/binary"  

       manifest:full-path="Scripts/java/Utils/Macros.jar"/> 

  

FormDocMacros_odt\ is re-zipped, becoming FormDocMacros.odt. Double-clicking 

on it causes it to open, to display the same form as before, but only after the user has 

clicked "Enable Macros" in the security warning (see Figure 12). 

 

 

Figure 12. The Macro Security Warning when Opening FormDocMacros.odt. 

 

Although the form is the same as previously, the button and textfield must be 

configured to use the document macros rather than macros stored inside Office. For 

example, the button's "Execute action" event should be assigned to GetText.show in 

the document, as in Figure 13. 

 

 

Figure 13. Selecting a Document Macro. 

 

The resulting event is displayed in Figure 14. 



Java LibreOffice Programming. Chapter 49. Ext/Doc Event Macros Draft #2 (20th March 2017) 

 19 © Andrew Davison 2017 

 

 

Figure 14. The "Execute action" Event. 

 

 

3.  Attaching Macros to Other Events 

This chapter and the last have concentrated on adding macros to form controls, but 

other parts of Office, and other documents, can utilize event macros as well. 

A summary of the different ways that event macros can be employed is given on the 

wiki page "Scripting LibreOffice" at https://help.libreoffice.org/Common/Scripting. It 

lists uses for event macros such as: 

 attached to form controls (already described); 

 attached to menu items and toolbar icons (this is covered by Add-ons in 

Chapter 46); 

 attached to Office and document events (described next); 

 attached to key combinations; 

 attached to an embedded object, such as a chart; 

 attached to a graphic; 

 attached to a hyperlink. 

The Tools > Customize dialog window supports the connection of event macros to 

menus, keyboards, toolbars, and events, as shown in Figure 15. 

 



Java LibreOffice Programming. Chapter 49. Ext/Doc Event Macros Draft #2 (20th March 2017) 

 20 © Andrew Davison 2017 

 

Figure 15. The Tools > Customize Dialog. 

 

The Events tab in Figure 15 has a pop-down list at its bottom which allows macros to 

be attached to Office events (as in the figure) or to events associated with the 

currently open document. 

A macro is selected via the "Macro…" button which takes the user to the Macro 

Selector dialog. In Figure 15, I've attached ShowEvent.show to the Office events 

"Start Application" and "Open Document". When Office starts it will display the 

dialog window on the left of Figure 16, and the dialog on the right when the document 

is opened. 

 

Figure 16. The ShowEvent.show Dialogs for Office Events. 

 

These dialogs are drawn by the DocumentEvent version of show() in the ShowEvent 

class: 

 

// in the ShowEvent class 

public static void show(XScriptContext sc,  



Java LibreOffice Programming. Chapter 49. Ext/Doc Event Macros Draft #2 (20th March 2017) 

 21 © Andrew Davison 2017 

                      com.sun.star.document.DocumentEvent e)  

{  display("document", e.EventName);  } 

 

Automatic Macro Attachment 

It's possible to automate the attachment of macros to Office and document events, as 

illustrated by the DocEvents.java example: 

 

// in DocEvents.java 

public static void main(String[] args) 

{ 

  XComponentLoader loader = Lo.loadOffice(); 

 

  Macros.listOfficeEvents(); 

 

  // list the "OnStartApp" and "OnLoad" Office event properties 

  PropertyValue[] osaProps = Macros.getEventProps("OnStartApp"); 

  Props.showProps("OnStartApp Event", osaProps); 

 

  PropertyValue[] olProps = Macros.getEventProps("OnLoad"); 

  Props.showProps("OnLoad Event", olProps); 

 

  // attach macros to event if it does not have macros already 

  if (Lo.isNullOrEmpty( (String)Props.getProp(osaProps, "Script"))) 

    Macros.setEventScript("OnStartApp",  

       "vnd.sun.star.script:ShowEvent.ShowEvent.show? 

                           language=Java&location=share"); 

 

  if (Lo.isNullOrEmpty( (String)Props.getProp(olProps, "Script"))) 

    Macros.setEventScript("OnLoad",  

       "vnd.sun.star.script:ShowEvent.ShowEvent.show? 

                          language=Java&location=share"); 

 

 

  XTextDocument doc = Write.openDoc("build.odt", loader); 

  if (doc == null) { 

    System.out.println("Could not open build.odt"); 

    Lo.closeOffice(); 

    return; 

  } 

 

  GUI.setVisible(doc, true); 

  Lo.wait(2000); 

 

  Macros.listDocEvents(doc); 

 

  // list the "OnPageCountChange" doc event properties 

  PropertyValue[] opccProps =  

               Macros.getDocEventProps(doc, "OnPageCountChange"); 

    Props.showProps("OnPageCountChange Event", opccProps); 

 

  if (Lo.isNullOrEmpty(  

                   (String)Props.getProp(opccProps, "Script"))) { 

    Macros.setDocEventScript(doc, "OnPageCountChange",  

       "vnd.sun.star.script:ShowEvent.ShowEvent.show? 

                             language=Java&location=share"); 

 

    Lo.save(doc);  // must save doc after event macro change 

  } 

 



Java LibreOffice Programming. Chapter 49. Ext/Doc Event Macros Draft #2 (20th March 2017) 

 22 © Andrew Davison 2017 

  Lo.waitEnter(); 

  Lo.closeDoc(doc); 

  Lo.closeOffice(); 

} // end of main() 

 

The program begins by listing all the names of the Office events by calling 

Macros.listOfficeEvents(), and then the properties for the "OnStartApp" and 

"OnLoad" events. It attaches ShowEvent.show to the two events, resulting in the 

macro setup in Figure 15. 

The output from Macros.listOfficeEvents() is: 

 

Event Handler names 

No. of names: 28 

  "OnCloseApp"  "OnCopyTo"  "OnCopyToDone"  "OnCopyToFailed" 

  "OnCreate"  "OnFocus"  "OnLoad"  "OnLoadFinished" 

  "OnModeChanged"  "OnModifyChanged"  "OnNew"  "OnPrepareUnload" 

  "OnPrepareViewClosing"  "OnPrint"  "OnSave"  "OnSaveAs" 

  "OnSaveAsDone"  "OnSaveAsFailed"  "OnSaveDone"  "OnSaveFailed" 

  "OnStartApp"  "OnStorageChanged"  "OnTitleChanged"  "OnUnfocus" 

  "OnUnload"  "OnViewClosed"  "OnViewCreated"  "OnVisAreaChanged" 

 

These names can be mapped without too much difficulty to the strings in the "Events" 

column of Figure 15. 

The properties listed for the "OnStartApp" and "OnLoad" events are: 

 

Properties for "OnStartApp Event": 

  EventType: Script 

  Script: 

 

Properties for "OnLoad Event": 

  EventType: Script 

  Script: 

 

In other words, neither events have macros attached to them at the start of 

DocEvents.java. 

Events are manipulated using the XEventSupplier interface. Its relevant services and 

interfaces are shown in Figure 17. 

 

Figure 17. The XEventSupplier Interface. 

 

Document events are reached through the OfficeDocument service while Office 

events are obtained via theGlobalEventBroadcaster (or the deprecated 

GlobalEventBroadcaster). 



Java LibreOffice Programming. Chapter 49. Ext/Doc Event Macros Draft #2 (20th March 2017) 

 23 © Andrew Davison 2017 

Macro.listOfficeEvents() starts with the theGlobalEventBroadcaster service, and uses 

XEventSupplier.getEvents() to obtain an XNameReplace object which is a named 

container whose entries can be changed: 

 

// in the Macros class 

public static void listOfficeEvents() 

{ System.out.println("\nEvent Handler names"); 

  XNameReplace eventHandlers = getEventHandlers(); 

  Lo.printNames( eventHandlers.getElementNames() ); 

} 

 

 

public static XNameReplace getEventHandlers() 

{ XGlobalEventBroadcaster geb =  

           theGlobalEventBroadcaster.get(Lo.getContext()); 

  return geb.getEvents();  

} 

 

Macros.getEventProps() looks up a specific event handler, and casts its entry in the 

XNameReplace container to a PropertyValue array: 

 

// in Macros class 

public static PropertyValue[] getEventProps(String eventName) 

{  

  XNameReplace eventHandlers = getEventHandlers(); 

  return getEventProps( eventHandlers, eventName); 

}  

 

 

public static PropertyValue[] getEventProps( 

            XNameReplace eventHandlers, String eventName) 

{ try { 

    Object oProps = eventHandlers.getByName(eventName); 

    if (AnyConverter.isVoid(oProps))  // or conversion may fail 

      return null; 

    else 

      return (PropertyValue[])oProps; 

  } 

  catch(com.sun.star.uno.Exception e) 

  {  System.out.println("Could not find event " + eventName); 

     return null; 

  } 

} // end of getEventProps() 

 

Macros.setEventScript() utilizes getEventProps() to get the PropertyValue[] array for 

a given event, and sets the "Script" property to be the full name of the macro (e.g. 

"vnd.sun.star.script:ShowEvent.ShowEvent.show?language=Java&location=share"). 

Then the original entry in the XNameReplace object is updated with the changed 

property: 

 

public static void setEventScript(String eventName,  

                                  String scriptName) 

{ 

  PropertyValue[] evProps = getEventProps(eventName); 

  if (evProps != null) 

    Props.setProp(evProps, "Script", scriptName); 



Java LibreOffice Programming. Chapter 49. Ext/Doc Event Macros Draft #2 (20th March 2017) 

 24 © Andrew Davison 2017 

  else 

    evProps = Props.makeProps("EventType", "Script", 

                              "Script", scriptName); 

 

  XNameReplace eventHandlers = getEventHandlers(); 

  try { 

    eventHandlers.replaceByName(eventName, evProps); 

    System.out.println("Set script for " + eventName + " to \"" + 

                                           scriptName + "\""); 

  } 

  catch(com.sun.star.uno.Exception e) 

  {  System.out.println("Could not set script " + eventName);  } 

} // end of setEventScript() 

 

The Macros utilities class contains similar methods for getting and setting document 

events. Macros.listDocEvents(), Macros.getDocEventProps(), and 

Macros.setDocEventScript() get the XEventSupplier object from the document via its 

OfficeDocument service. 

Macros.listDocEvents() prints the following document event names: 

 

Doc Event Handler names 

No. of names: 34 

  "OnCloseApp"  "OnCopyTo"  "OnCopyToDone"  "OnCopyToFailed" 

  "OnCreate"  "OnFieldMerge"  "OnFieldMergeFinished"  "OnFocus" 

  "OnLayoutFinished"  "OnLoad"  "OnLoadFinished"  "OnMailMerge" 

  "OnMailMergeFinished"  "OnModeChanged"  "OnModifyChanged"  "OnNew" 

  "OnPageCountChange"  "OnPrepareUnload"   

  "OnPrepareViewClosing"  "OnPrint" 

  "OnSave"  "OnSaveAs"  "OnSaveAsDone"  "OnSaveAsFailed" 

  "OnSaveDone"  "OnSaveFailed"  "OnStartApp"  "OnStorageChanged" 

  "OnTitleChanged"  "OnUnfocus"  "OnUnload"  "OnViewClosed" 

  "OnViewCreated"  "OnVisAreaChanged" 

 

There's a big overlap with Office events, and the difference between the same-named 

events, such as "OnLoad", is that the Office version is fired when any document is 

loaded, whereas the document "OnLoad" will only fire for the loading of "build.odt". 

DocEvent.java attaches ShowEvent.show to its "OnPageCountChange" event, and the 

document is saved so the change is remembered. 

The change can be confirmed by opening the document and checking the Event tab of 

the Tools > Customize dialog. The "OnPageCountChange" setting is at the end of the 

events, as in Figure 18. 

 



Java LibreOffice Programming. Chapter 49. Ext/Doc Event Macros Draft #2 (20th March 2017) 

 25 © Andrew Davison 2017 

 

Figure 18. The Event tab of the Tools > Customize Dialog. 

 

Note that the "Save in:" pop-down list at the bottom of the dialog shows the document 

name instead of "LibreOffice". 

 

 

4.  Executing Macros from the Command Line 

One of the show() method in the ShowEvent class doesn't have an event argument: 

 

// part of ShowEvent.java 

public static void show(XScriptContext sc) 

{  display("menu/run");   } 

 

This method can be called in a number of different situations:   

 when the macro is attached to a menu item; 

 when the macro is executed from the "Run Macro..." menu item of the  

Tools > Macros menu; 

 if there's no suitable event handling version of show(), then this version acts as 

a default; 



Java LibreOffice Programming. Chapter 49. Ext/Doc Event Macros Draft #2 (20th March 2017) 

 26 © Andrew Davison 2017 

 when the macro is executed from the command line. 

The last approach can be employed when Office is called from the command line to 

open a document. The command line arguments can include the full name of a macro, 

which will cause its "run" version to be called. For example: 

 

office.exe build.odt "vnd.sun.star.script:ShowEvent.ShowEvent.show? 

                                   language=Java&location=share" 

 

"build.odt" is opened, and the ShowEvent.show share macro executed.  

The execMacro.bat batch file in the examples simplifies these command line 

parameters. 

 


